TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74VHC595F, TC74VHC595FK

8-Bit Shift Register/Latch (3-state)

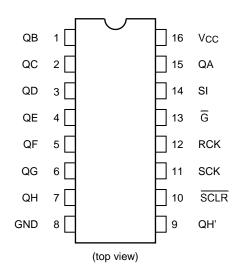
The TC74VHC595 is an advanced high speed 8-BIT SHIFT REGISTER/LATCH fabricated with silicon gate C 2 MOS technology.

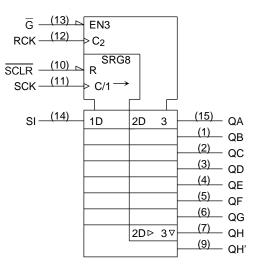
It achieves the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The TC74VHC595 contains an 8-bit static shift register which feeds an 8-bit storage register.

Shift operation is accomplished on the positive going transition of the SCK input. The output register is loaded with the contents of the shift register on the positive going transition of the RCK input. Since RCK and SCK signal are independent, parallel outputs can be held stable during the shift operation. And, since the parallel outputs are 3-state, it can be directly connected to 8-bit bus. This register can be used in serial-to-parallel conversion, data receivers, etc.

An input protection circuit ensures that 0 to 5.5 V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5 V to 3 V systems and two supply systems such as battery back up. This circuit prevents device destruction due to mismatched supply and input voltages.


Features

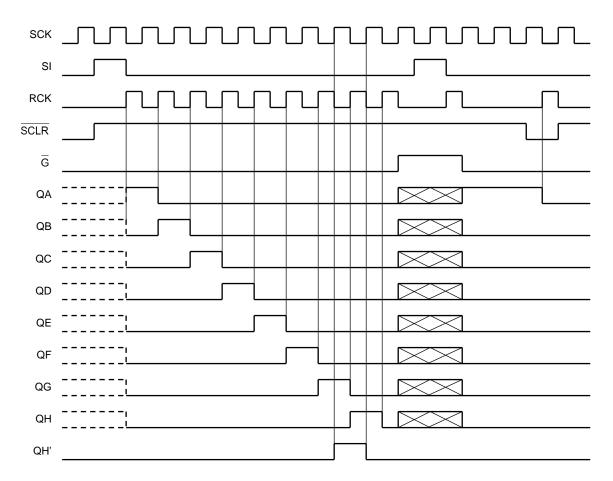

- High speed: fmax = 185 MHz (typ.) at VCC = 5 V
- Low power dissipation: ICC = 4 μA (max) at Ta = 25°C
- High noise immunity: VNIH = VNIL = 28% VCC (min)
- Power down protection is provided on all inputs.
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: VCC (opr) = 2 V to 5.5 V
- Low noise: VOLP = 1.0 V (max)
- Pin and function compatible with 74ALS595

TC74VHC595F	
HURT	HHH
SOP16-P-300 TC74VHC595FK	-1.27A
VSSOP16-P-00	
Weight	
SOP16-P-300-1.27A	: 0.18 g (typ.)
VSSOP16-P-0030-0.50	: 0.02 g (typ.)

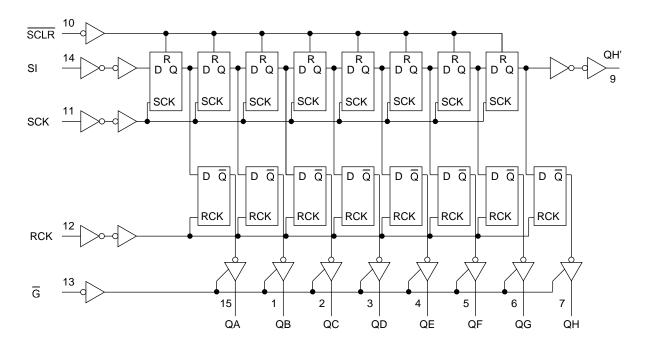
TOSHIBA

Pin Assignment

Truth Table


	Inputs				Function
SI	SCK	SCLR	RCK	IG	Function
х	х	Х	х	Н	QA thru QH outputs disable
х	х	х	х	L	QA thru QH outputs enable
х	х	L	х	Х	Shift register is cleared.
L		н	х	х	First stage of S.R. becomes "L". Other stages store the data of previous stage, respectively.
н		н	х	х	First stage of S.R. becomes "H". Other stages store the data of previous stage, respectively.
х	\neg	Н	х	Х	State of S.R. is not changed.
х	х	х		Х	S.R. data is stored into storage register.
х	х	х		Х	Storage register stage is not changed.

X: Don't care


IEC Logic Symbol

TOSHIBA

Timing Chart

System Diagram

Absolute Maximum Ratings (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage range	Vcc	-0.5 to 7.0	V
DC input voltage	VIN	-0.5 to 7.0	V
DC output voltage	Vout	-0.5 to Vcc + 0.5	V
Input diode current	lik	-20	mA
Output diode current	lok	±20	mA
DC output current	Ιουτ	±25	mA
DC VCC/ground current	lcc	±75	mA
Power dissipation	PD	180	mW
Storage temperature	T _{stg}	-65 to 150	°C

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	Vcc	2.0 to 5.5	V
Input voltage	VIN	0 to 5.5	V
Output voltage	Vout	0 to Vcc	V
Operating temperature	Topr	-40 to 85	°C
Input rise and fall time	dt/dv	0 to 100 (V _{CC} = 3.3 ± 0.3 V) 0 to 20 (V _{CC} = 5 ± 0.5 V)	ns/V

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol Test Condition			7	Ta = 25°C			Ta = −40 to 85°C			
	-,			V _{CC} (V)	Min	Тур.	Max	Min	Max		
High-level input		_		2.0	1.50	_	_	1.50	_	V	
voltage	VIH			3.0 to 5.5	V _{CC} × 0.7	—	—	V _{CC} × 0.7	—		
Low-level input				2.0	_	-	0.50	_	0.50		
voltage	VIL		—		—	—	V _{CC} × 0.3	—	V _{CC} × 0.3	V	
				2.0	1.9	2.0	_	1.9	_		
LP also be and an effect		VIN = VIH or VIL	I _{OH} = -50 μA	3.0	2.9	3.0	_	2.9	—	V	
High-level output voltage	Voн			4.5	4.4	4.5	—	4.4	—		
ge			$I_{OH} = -4 \text{ mA}$	3.0	2.58	—	—	2.48	—		
			I _{OH} = −8 mA	4.5	3.94	—	_	3.80	—		
	Vol	VIN = VIH or VIL	I _{OL} = 50 μA	2.0	_	0.0	0.1	_	0.1		
				3.0	—	0.0	0.1	—	0.1		
Low-level output voltage				4.5	—	0.0	0.1	—	0.1	V	
. enage			$I_{OL} = 4 \text{ mA}$	3.0	—	_	0.36	_	0.44		
			$I_{OL} = 8 \text{ mA}$	4.5	-	—	0.36	—	0.44		
3-state output off- state current	loz	VIN = VIH or VIL VOUT = VCC or GND		5.5	_	_	±0.25	_	±2.50	μA	
Input leakage current	IIN	V _{IN} = 5.5 V or GND		0 to 5.5	_	_	±0.1	_	±1.0	μA	
Quiescent supply current	Icc	VIN = VCC O	r GND	5.5	—	_	4.0	_	40.0	μA	

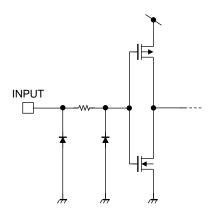
Timing Requirements (input: tr = tf = 3 ns)

Characteristics	Characteristics Symbol Test Condition		_	Ta = 25°C		Ta = −40 to 85°C	Unit
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum pulse width (SCK, RCK)	t _{w (H)} t _{w (L)}	_	3.3 ± 0.3 5.0 ± 0.5		5.0 5.0	5.0 5.0	ns
Minimum pulse width (SCLR)	t _w (L)	_	3.3 ± 0.3 5.0 ± 0.5		5.0 5.0	5.0 5.0	ns
Minimum set-up time (SI-SCK)	ts	—	3.3 ± 0.3 5.0 ± 0.5		3.5 3.0	3.5 3.0	ns
Minimum set-up time (SCK-RCK)	ts	_	3.3 ± 0.3 5.0 ± 0.5		8.0 5.0	8.5 5.0	ns
Minimum set-up time (SCLR -RCK)	ts	—	3.3 ± 0.3 5.0 ± 0.5		8.0 5.0	9.0 5.0	ns
Minimum hold time (SI-SCK)	th	_	3.3 ± 0.3 5.0 ± 0.5		1.5 2.0	1.5 2.0	ns
Minimum hold time (SCK-RCK)	th	—	3.3 ± 0.3 5.0 ± 0.5		0 0	0 0	ns
Minimum hold time (SCLR -RCK)	t _h	—	3.3 ± 0.3 5.0 ± 0.5	_	0 0	0 0	ns
Minimum removal time (SCLR)	t _{rem}	—	3.3 ± 0.3 5.0 ± 0.5		3.0 2.5	3.0 2.5	ns

AC Characteristics (input: tr = tf = 3 ns)

Characteristics	Symbol	Те	Test Condition		Ta = 25°C			Ta = −40 to 85°C		Unit
Characteristics			V _{CC} (V)	C _L (pF)	Min	Тур.	Max	Min	Max	Offic
			3.3 ± 0.3	15	_	8.8	13.0	1.0	15.0	
Propagation delay time	t _{pLH}			50		11.3	16.5	1.0	18.5	
(SCK-QH')	t _{pHL}	_	50.05	15		6.2	8.2	1.0	9.4	ns
, ,			5.0 ± 0.5	50		7.7	10.2	1.0	11.4	
			22.02	15		8.4	12.8	1.0	13.7	
Propagation delay time	4		3.3 ± 0.3	50		10.9	16.3	1.0	17.2	
(SCLR -QH')	tpHL	_	E 0 : 0 E	15	_	5.9	8.0	1.0	9.1	ns
			5.0 ± 0.5	50	_	7.4	10.0	1.0	11.1	
			3.3 ± 0.3	15	_	7.7	11.9	1.0	13.5	ns
Propagation delay time	tpLH tpHL	_		50		10.2	15.4	1.0	17.0	
(RCK-Q _n)			5.0 ± 0.5	15		5.4	7.4	1.0	8.5	
				50		6.9	9.4	1.0	10.5	
	tpZL tpZH	RL = 1 kΩ	3.3 ± 0.3	15		7.5	11.5	1.0	13.5	ns
Output anable time				50		9.0	15.0	1.0	17.0	
Output enable time			5.0 ± 0.5	15	_	4.8	8.6	1.0	10.0	
				50	_	8.3	10.6	1.0	12.0	
Output dischla time	tpLZ	RL = 1 kΩ	3.3 ± 0.3	50	_	12.1	15.7	1.0	16.2	
Output disable time	t _{pHZ}	$K\Gamma = 1 KT$	5.0 ± 0.5	50	-	7.6	10.3	1.0	11.0	ns
			3.3 ± 0.3	15	80	150	_	70	—	MHz
Maximum clock	f _{max}		3.3 ± 0.3	50	55	130	_	50	—	
frequency	Imax	_	5.0 ± 0.5	15	135	185	_	115	—	
			5.0 ± 0.5	50	95	155	_	85	—	
Input capacitance	CIN		_		_	4	10	_	10	pF
Output capacitance	Соит		_		-	6	-	-	—	pF
Power dissipation capacitance	C _{PD}			(Note)	_	87	_	_	_	pF

Note: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

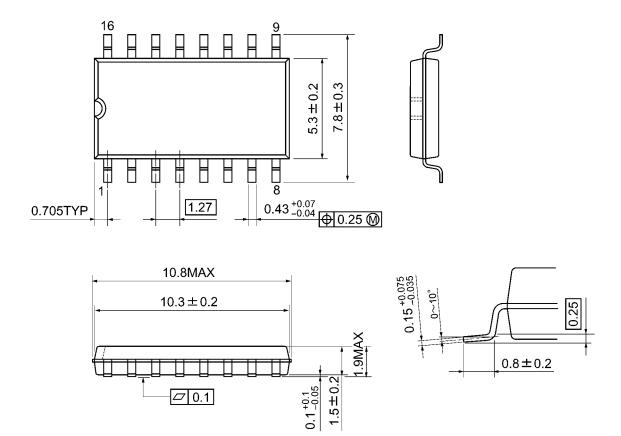

Average operating current can be obtained by the equation:

 $ICC (opr) = CPD \cdot VCC \cdot fIN + ICC$

Noise Characteristics (input: tr = tf = 3 ns)

Oh one staristics	Sumbol	Test Condition		Ta = 25°C		Linit
Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Limit	Unit
Quiet output maximum dynamic VOL	Volp	CL = 50 pF	5.0	0.8	1.0	V
Quiet output minimum dynamic VOL	Volv	CL = 50 pF	5.0	-0.8	-1.0	V
Minimum high level dynamic input voltage	Vihd	CL = 50 pF	5.0	-	3.5	V
Maximum low level dynamic input voltage	VILD	C _L = 50 pF	5.0	_	1.5	V

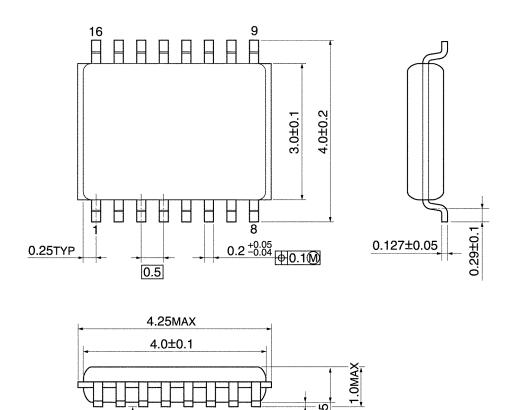
Input Equivalent Circuit



Package Dimensions

SOP16-P-300-1.27A

Unit: mm


Weight: 0.18 g (typ.)

Package Dimensions

VSSOP16-P-0030-0.50

Unit: mm

270.1

0.1±0.05 0.8±0.05

Weight: 0.02 g (typ.)